Primal-Dual Mixed Finite Element Methods for the Elliptic Cauchy Problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Finite Element Methods for Elliptic Problems*

This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...

متن کامل

Discontinuous Dual-primal Mixed Finite Elements for Elliptic Problems

We propose a novel discontinuous mixed nite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial nite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial...

متن کامل

Primal Hybrid Finite Element Methods for 2nd Order Elliptic Equations

The paper is devoted to the construction of finite element methods for 2nd order elliptic equations based on a primal hybrid variational principle. Optimal error bounds are proved. As a corollary, we obtain a general analysis of nonconforming finite element methods.

متن کامل

Dual Formulations of Mixed Finite Element Methods

Abstract Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge ...

متن کامل

A Dual–mixed Finite Element Method for the Brinkman Problem

A mixed variational formulation of the Brinkman problem is presented which is uniformly well–posed for degenerate (vanishing) coefficients under the hypothesis that a generalized Poincaré inequality holds. The construction of finite element schemes which inherit this property is then considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2018

ISSN: 0036-1429,1095-7170

DOI: 10.1137/17m1163335